Kinetochore-Independent Chromosome Poleward Movement during Anaphase of Meiosis II in Mouse Eggs
نویسندگان
چکیده
Kinetochores are considered to be the key structures that physically connect spindle microtubules to the chromosomes and play an important role in chromosome segregation during mitosis. Due to different mechanisms of spindle assembly between centrosome-containing mitotic cells and acentrosomal meiotic oocytes, it is unclear how a meiotic spindle generates the poleward forces to drive two rounds of meiotic chromosome segregation to achieve genome haploidization. We took advantage of the fact that DNA beads are able to induce bipolar spindle formation without kinetochores and studied the behavior of DNA beads in the induced spindle in mouse eggs during meiosis II. Interestingly, DNA beads underwent poleward movements that were similar in timing and speed to the meiotic chromosomes, although all the beads moved together to the same spindle pole. Disruption of dynein function abolished the poleward movements of DNA beads but not of the meiotic chromosomes, suggesting the existence of different dynein-dependent and dynein-independent force generation mechanisms for the chromosome poleward movement, and the latter may be dependent on the presence of kinetochores. Consistent with the observed DNA bead poleward movement, sperm haploid chromatin (which also induced bipolar spindle formation after injection to a metaphase egg without forming detectable kinetochore structures) also underwent similar poleward movement at anaphase as DNA beads. The results suggest that in the chromatin-induced meiotic spindles, kinetochore attachments to spindle microtubules are not absolutely required for chromatin poleward movements at anaphase.
منابع مشابه
Microtubule flux mediates poleward motion of acentric chromosome fragments during meiosis in insect spermatocytes.
We applied a combination of laser microsurgery and quantitative polarization microscopy to study kinetochore-independent forces that act on chromosome arms during meiosis in crane fly spermatocytes. When chromosome arms located within one of the half-spindles during prometa- or metaphase were cut with the laser, the acentric fragments (lacking kinetochores) that were generated moved poleward wi...
متن کاملFunctional Redundancy in the Maize Meiotic Kinetochore
Kinetochores can be thought of as having three major functions in chromosome segregation: (a) moving plateward at prometaphase; (b) participating in spindle checkpoint control; and (c) moving poleward at anaphase. Normally, kinetochores cooperate with opposed sister kinetochores (mitosis, meiosis II) or paired homologous kinetochores (meiosis I) to carry out these functions. Here we exploit thr...
متن کاملDirect Visualization of Microtubule Flux during Metaphase and Anaphase in Crane-Fly Spermatocytes□V
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward throug...
متن کاملThe kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A.
The kinesin-like protein CENP-E transiently associates with kinetochores following nuclear envelope breakdown in late prophase, remains bound throughout metaphase, but sometime after anaphase onset it releases and by telophase becomes bound to interzonal microtubules of the mitotic spindle. Inhibition of poleward chromosome movement in vitro by CENP-E antibodies and association of CENP-E with m...
متن کاملDirect visualization of microtubule flux during metaphase and anaphase in crane-fly spermatocytes.
Microtubule flux in spindles of insect spermatocytes, long-used models for studies on chromosome behavior during meiosis, was revealed after iontophoretic microinjection of rhodamine-conjugated (rh)-tubulin and fluorescent speckle microscopy. In time-lapse movies of crane-fly spermtocytes, fluorescent speckles generated when rh-tubulin incorporated at microtubule plus ends moved poleward throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009